Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Int J Mol Sci ; 23(14)2022 Jul 12.
Article in English | MEDLINE | ID: covidwho-1964005

ABSTRACT

Grain legumes are a rich source of dietary protein for millions of people globally and thus a key driver for securing global food security. Legume plant-based 'dietary protein' biofortification is an economic strategy for alleviating the menace of rising malnutrition-related problems and hidden hunger. Malnutrition from protein deficiency is predominant in human populations with an insufficient daily intake of animal protein/dietary protein due to economic limitations, especially in developing countries. Therefore, enhancing grain legume protein content will help eradicate protein-related malnutrition problems in low-income and underprivileged countries. Here, we review the exploitable genetic variability for grain protein content in various major grain legumes for improving the protein content of high-yielding, low-protein genotypes. We highlight classical genetics-based inheritance of protein content in various legumes and discuss advances in molecular marker technology that have enabled us to underpin various quantitative trait loci controlling seed protein content (SPC) in biparental-based mapping populations and genome-wide association studies. We also review the progress of functional genomics in deciphering the underlying candidate gene(s) controlling SPC in various grain legumes and the role of proteomics and metabolomics in shedding light on the accumulation of various novel proteins and metabolites in high-protein legume genotypes. Lastly, we detail the scope of genomic selection, high-throughput phenotyping, emerging genome editing tools, and speed breeding protocols for enhancing SPC in grain legumes to achieve legume-based dietary protein security and thus reduce the global hunger risk.


Subject(s)
Fabaceae , Grain Proteins , Malnutrition , Edible Grain/genetics , Edible Grain/metabolism , Fabaceae/genetics , Food Security , Genome-Wide Association Study , Grain Proteins/metabolism , Humans , Malnutrition/metabolism , Plant Breeding , Plant Proteins/genetics , Vegetables/genetics
2.
Nutrients ; 13(5)2021 May 10.
Article in English | MEDLINE | ID: covidwho-1224081

ABSTRACT

BACKGROUND: Micronutrients play roles in strengthening and maintaining immune function, but their supplementation and/or deficiency effects on respiratory tract infections are inconclusive. This review aims to systematically assess the associations between micronutrient supplementation or deficiency, with novel coronavirus incidence and disease severity. METHODS: Systematic literature searches conducted in five electronic databases identified 751 unique studies, of which 33 studies (five supplementation studies, one supplementation and deficiency study, and 27 deficiency studies) were eventually included in this review. Proportions of incidence and severity outcomes in each group, and adjusted summary statistics with their relevant 95% confidence intervaIs (CI) were extracted. Data from 19 studies were pooled in meta-analysis using the generic inverse variance method. FINDINGS: A total of 360,346 patients across 16 countries, with a mean age between 32 and 87.7 years, were involved across 33 studies. All studies were on COVID-19 infections. In individuals without micronutrient deficiency, there was a significant reduction on odds of COVID-19 incidence (pooled OR: 0.37, 95% CI: 0.18, 0.78), and ICU admissions or severe/critical disease onset when combined as a severity outcome (pooled OR: 0.26, 95% CI: 0.08, 0.89). Insignificant protective effects were observed on other outcome measures, namely mortality, ICU admission, progression to respiratory-related complications, severe/critical disease onset or requiring respiratory support and hospitalization rate. CONCLUSION: The absence of micronutrient deficiency significantly reduced COVID-19 incidence and clinical deterioration in hospitalized patients. Usage of micronutrients as prophylaxis and complementary supplement in therapeutic management of COVID-19 patients may be a promising and cost-effective approach warranting in-depth investigation.


Subject(s)
COVID-19 , Dietary Supplements , Malnutrition , Micronutrients/deficiency , SARS-CoV-2 , Adult , Aged , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/pathology , Female , Humans , Male , Malnutrition/epidemiology , Malnutrition/metabolism , Malnutrition/pathology , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL